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NASA - |
SrACE | ACRONYMS

FLIGHT Srlockheed ﬁ

ACRONYM MEANING ACRONYM MEANING
ASPS Attachment, Stabilization, and Positioning Subsystem MSFC Marshall Space Flight Center
ASRM Advanced Solid Rocket Motor MS) Microwave Sounder/Imager
AWP Assembly Work Platform MSS Mobile Servicing System
BOL Beginning of Life MT Mobile Transporter ﬁ
oz Command and Control Zone NASA {National Aeronautics and Space Administration
CEM Computer_Integrated Engineering and Manufacturing OMS Operations Management System
CLAES Cryogenic Limb Array Etalon Spectrometer oMV Orbital Maneuvering Vehicle
DOCU DC to DC Converter Unit 021 On-Orbit Replaceable Unit ﬁ
EPS Electrical Power Subsystem otV Orbital Transfer Vehicle
ESGP Earth Science Geostationary Platform PDGF Power and Data Grapple Fixture
EVA Extra-Vehicular _Activity PTF Propellant Tank Farm ,
D Space Station Freedom Operations Database D {Research/Development Growth Emphasis for SSF ,_
fps Feet per Second R Radio Frequency
FTS Flight Telerobotic Servicer RPCM Remote Power Controller Modules
GEPS Geostationary Earth Processes Spectrometer Si Science Instrument |
. GHz Gigahertz SMOD Science Mission Operations Database .7
GN&C Guidance, Navigation and Control SODAS Space Operations Database and Analysis System
HE!I Human Exploration Initiative SOW Statement of Work
- HEPI High-Resolution_Earth Processes Imager SPDA Secondary Power Distribution Assembly |
o IDEAS2 Integrated Design, Engineering and Analysis Software System SSAT !Space_Station Assembly Technology A
IVA Intra-Vehicular _Activity SSF Space Station Freedom
] Kw Killowatt SSRMS Space_Station Remote Manipulator System :
.. LARC Langley Research Center STV Space Transfer Vehicle __
Lb Pound TBD To Be Determined !
. LEE Latching End Effector TLI Trans-Lunar Injection
;o LFMR Low Frequency Microwave Radiometer ™ Transpontation Node Emphasis for SSF
LMSC Lockheed Missiles and Space Company TPDA Tertiary Power Distribution Assembly
. LTV Lunar Transfer Vehicle UARS Upper Atmosphere Research Satellite
= MPAC Multi-Purpose Applications Console VPOD Vehicle Processing Operations Database
X MRS Mobile Remote Servicer WAM Worksite Attachment Mechanism
v MSC Mobile Servicing Centre




poapporl

NOILONAOH.LNI




ESGP/SSF ACCOMMODATION STUDY BACKGROUND

The object, approach and output products for the ESGP/SSF accommodation
study were based on the NASA/HQ RTOP associated with the study effort
and were a major input to the study plan document.

An accommodation assessment on the evolution SSF involves a study of
how space and resources are controlled and allocated. Allocation of
finite resources will be a major long-term problem for SSF, requiring
careful configuration and resource management.

Utilization of a system engineering process is required which allows
developing database evolution scenarios to assist in controlling the
SSF evolution process.

Standard methods of finite resource allocation tracking involve various
operational databases that will be used as control tools to help manage
resources (such as power, assembly area and volume, EVA and IVA time
and robotic manipulators) oﬁwﬂwoww to the evolutionary SSF.

The output of the ESGP/SSF accommodation study task is the eventual
input to wuser accommodation handbooks, wuser procedures, and
organizational planning and interface definition documentation.
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STUDY IO0GIC FLOW DIAGRAM

The study objectives were converted to three specific tasks. The
relationships of these tasks and the iterative process used during the
study are illustrated on the facing diagram. Individual tasks

subelements are clearly identified. Also shown is the main study
~product: the Final Report (DR-12).

Task 1. Configuration Definition

The objective of this task is to determine the physical, functional
design and operations implications for accommodation of the Advanced

Earth Science Geostationary Platform (ESGP) at Space Station Freedonm
(SSF).

Task 2. SSF Resource and Functional Requirements

The objective of this task is to identify resource requirements at the
SSF for advanced ESGP delivery, assembly, checkout, and preparation for
launch into a Geostationary orbit. Three major areas shall be
investigated: logistics / spares / and support equipment, SSF crew
size / timeline / schedule requirements, and the utilization of EVA
versus robotics and man / machine mix capabilities.

Task 3. ESGP Servicing Requirements

The objective of this task is to identify the preliminary requirements
for ESGP servicing at the SSF.

All analysis trades, configuration sketches, resource requirements and
parametric data developed as a result of these tasks will be documented
and included in the Study Final Report (DR-12).
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STUDY SCHEDULE

The schedule for the study is shown in the accompanying figure. The
schedule shows the time phasing of the configuration definition, the

SSF resource functional requirements and the ESGP servicing
requirements tasks.
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STUDY REFERENCE DOCUMENTATION

The following two figures present a listing of the documentation used
as reference material during the study. Reference documentation used
in the material contained within this report is cited by a numerical

designator corresponding to the reference documentation list contained
in these two figures.
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SSF_EVOLUTION OPERATIONS OVERVIEW - EXAMPLE -

The figure depicts a possible evolution operations configuration
overview. This figure is shown to emphasize that SSF evolution is not
only concerned with the orbiting SSF but with all infrastructure with
which SSF is associated, including Earth-based segments.

Gross requirements will be used to drive the operations analyses,
functional analyses, trade studies and finally the initial utilization

and operations architectures for SSF Evolution. Gross requirements
that are expected to be crucial to initiating SSF .evolution operations
architecture are: (1) mass, size and function of eugipments and

vehicles to be received and processed, (2) processing, servicing and
maintenance needed to 'be performed, (3) infrastructure resources

:mﬁmmmmﬁw to process items, and (4) operations necessary to be
performed. W

On-orbit operations studies will be guided UW the moHHQSMda"

o Minimize/eliminate operations that can be performed on Earth
o Operations should be as automated as possible
o Avoid or minimize EVAs
o Simplify essential EVAs
o Avoid propellent transfers on SSF (safety)
Alternate: use nearby co-orbiting platform
o

Follow recommendations of the recent Utilization and Operations
' Task Force

Critical issues for on-orbit operation are: EVA; communications links;
Shuttle and STV rendezvous; maintenance; timeline management; and
control of logistics and other critical assets.
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ADVANCED ESGP ORBITAIL CONFIGURATION

A full three-dimensional view of the >Q<msnmn ESGP is shown in its Aa
deployed on-orbit configuration. , E

__,:
evwmoosuwacﬂmdwoszmwcvmuuppmwumsamoaossommﬁmmww»:mdﬂcamnﬂmSMﬁs _ﬁ
a total collective weight of 10004 1lb. Separate modules attached to

7.
both ends of the Platform are used for the scientific payloads m:a the ?
bus subsystem equipment items. Fﬁ

Major subsystem desigh considerations are as follows:

o The use of graphite/aluminum struts provides a low coefficient rw
of thermal expansion structural frame :

o Propellant capacity is sized for a 10 year life ;E

o The power subsystem is also sized for a 10 year life. Beginning i
of life (BOL) power provided by the solar arrays is 10 Kw.

18
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ADVANCED ESGP BUS AND PAYLOAD ARRANGEMENT

The plan view of the deployed configuration of the Advanced ESGP shows
the platform dimensions and the location and size of the 7 and 20 meter
radiometer antennas. The solar arrays and the north and south wing
science instrument platforms are also illustrated and identified.
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ADVANCED ESGP NORTH SCIENCE MODULE “—

vamw@:ﬂmm:osmmulc<wm£0mﬁcmwsaw<wncmw payloads and _ﬁ
communication equipment mounted on the north science module.
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,76
, i i ,ﬁ
>U<>z,0m_u ESGP SOUTH SCIENCE MODULE i
The figure shows a 3-D view of the individual payloads and iﬁ

communication equipment mounted on the south science module.
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ADVANCED ESGP_BUS MODULE ARRANGEMENT

A plan view of the bus subsystem module mﬂwmsomsmlﬁ is shown in the
figure. The bus modules are located at both ends of the truss
platform. Individual equipment items are identified in the figure.
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ADVANCED ESGP WEIGHT ESTIMATE

The weight estimate for the Advanced ESGP is 32116 1lb and includes a
bus weight contingency of 30%. 1Individual bus subsystem weights, total
payload weight, and total propellant weight for a 10 year life are

listed. The total payload weight as a percentage of total platform dry
weight is 39%.
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INTRODUCTION

In order to provide a realistic detailing of the requirements imposed
on the Space Station Freedom by an Advanced Earth Science Geostationary

Platform (ESGP), it is necessary to properly define the nature of the
Advanced Platform.

As is true with any science-oriented spacecraft, the overall design of
the Platform and the necessary support requirements are driven by the
Science Instruments (SIs). In other words, to properly study the
support required of the evolutionary Space Station for the ESGP, it is
necessary to define the top-level SI requirements for the Platform.
This allows the identification of instrument requirements that are
drivers and that critically influence and govern the ESGP support
requirements. A realistic determination of these requirements allows
the derivation of a reasonable and viable Advanced ESGP, which, in
turn, allows the identification of realistic requirements imposed on
the evolutionary Space Station by the Advanced ESGP.

32
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STRAWMAN PAYIOAD

Earlier phases of the LMSC ESGP contract (1987 - 1988) investigated the
nature of Advanced ESGPs, and included the identification of a
candidate strawman SI payload for next-generation Platforms. The list
is shown on the accompanying page.

The 1list represents a logical extrapolation of current technology,
instrumentation and performance and extends these into the time-frame
of the Advanced ESGP. Although much of the instrumentation currently
exists in various stages of maturity, the primary distinction is that

the Advanced ESGP will feature SIs with higher resolution, higher:

sensitivity and better overall performance as compared to earlier
generations of SIs.
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INSTRUMENT DRIVERS__
— CATEGORIES -

Review of the strawman payload 1list and the general instrument

characteristics has led to the identification of three categories of SI
drivers. .

The desire for higher spatial resolution and the 1likely desire for
extended spectral bandwidth combined with the presence of microwave
radiometers in the strawman payload results in the size of the
microwave radiometers as being a critical issue. The presence of a 4.4
meter microwave radiometer on the first ESGP is driving both the
platform and instrument design, and the possibility of larger
radiometers of a similar nature is expected to exacerbate the problem.

Along the same lines, the desire for higher spatial resolution for
imagers can only be achieved through the use of larger mirrors. These
larger mirrors will result in an increase both in instrument size and
weight, two factors that influence overall platform design.

The third category is the issue of cryogen consumables. Although the
current ESGP is not expected to carry any cryogenically cooled
instruments, higher performance requirements in the long wavelength
infrared spectral region dictate detector temperature requirements that
can not be achieved on a purely passive basis. As the utilization of
mechanical coolers/refrigerators is likely to induce pointing stability
disturbances on the Platform, the alternative is to use cryogens to
cool the detectors, in spite of their inherently limited lifetime.
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SUMMARY

A summary of the major science instrument requirements that are
expected to drive the support of the Advanced ESGP at the Space Station
is presented on the accompanying chart.

The estimated total payload weight and power requirements were derived
based on data developed during the earlier phases of the ESGP study.

With a description of the major driving science instrument
requirements, it is now possible to shape the developmental concept of
an Advanced ESGP and use that to derive and study the requirements
imposed by the Advanced Platform on the evolutionary Space Station.
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ADVANCED ESGP SI USAGE OF SSF

Staging of an Advanced ESGP at the SSF results in three distinct
benefits to the Science Instruments that comprise the ESGP payload.

The primary benefit is a relaxation of the size constraints imposed on
the SIs. With the ESGP assembled in large sections at the SSF, the
size of an SI can be larger as there is less of a concern of violating
strict launch vehicle constraints as there would be if the Advanced
ESGP was launched as one vehicle. This results in the possibility of
larger mirrors for the imagers and larger antenna diameters for the
microwave radiometers, which, in turn, results in a performance
enhancement for the SIs.

Launch weight of any vehicle is always of great concern, and staging
the Advanced ESGP at the SSF relaxes this concern. Advanced SIs are
likely to carry cryogens to allow their detectors to be cooled to
sufficient level to permit long-wavelength infrared observations. As
cryogens are heavy, their use on Earth-launch platforms is typically
discouraged unless absolutely necessary. However, use of the SSF as a
top-off point for cryogens, allows those SIs that use cryogens to
launch with a minimum amount of the coolant with the dewar being filled
once the SI reaches SSF.

A final benefit for SI usage of SSF is the possibility of checkout of
the SIs prior to transfer to the operational geostationary orbit. Such
checkout is 1likely to be limited to basic activities such as 1low-
voltage turn on, activation of monitoring and housekeeping systems
etc., This is due to the possibility of contamination of exposed SI
optical surfaces while in proximity to the SSF, as well as the required
time to allow outgassing which could harm systems that utilize high
voltage.
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EVOLUTIONARY SSF

The SSF Evolutionary growth depicted in the figure was contained in the
NASA/LARC final package briefing of October 1989 entitled SSF
Accommodation of the HEI and was based on two years of systems studies
sponsored by the Official Space Station Transition Definition Program
including Transportation Node studies sponsored U< OEXP. The dates
shown on the bottom of the figure were included in the Option 5; SSF
Deployment Option schedule. Ideally, the assembly and launch of the
Advanced ESGP would occur sometime prior to the start of LTV and MTV
Operations in 2014 during the period of Reusable LTV Operations which
included two SSRMS and MSC operational capability.
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LARC R&D AND TRANSPORTATION NODE COMPARISONS

The figure shows a growth comparison for the multidiscipline R&D and
transportation node options of the evolutionary SSF. The vehicle
assembly design requirements of the Advanced ESGP are optimally
satisfied by the transportation node option which provides a 2 MsC
capability operating in the vicinity of the assembly hangar facility.
Additionally, the STV assembly facility is larger on the transportation

node option and is better suited for the Advanced ESGP mission
requirements.

Data for the growth comparison was contained in a NASA/LARC briefing
package dated June 1989.

46

L)



SISVHAW3 3AO0N 'dSNVHL = N1
SISVHdW3 HIMOYO a%H = aH

Ly

HIONVH ATBWISSY NLNVHLHITIVAS SI | P "Ov4 A1aW3SSY
ALNIOV G ‘SAQVOTAVd 03D SLHOAANS ALS HOA "SWIWOJDV ay’ /HIONVH ALS
a3GNTONI SNOILYGOWWOODV AWO ‘INJWIHINOIH | 4 A "OVd DNIOIAHIS
NOWWOD V Sl SIIHOLVAHISEO 1VIHD 40 DNIJIAHIS
HIONVH AT8WISSY NIHLIM S.OSW a31voIla3d 2 JHINODIY AVWNL | A OSH
SHIM3IA HO4 ONINIVHLSNOD 3HY SLOM4NOD IVNOLLVHIAONL | A P V4V
1N8 SAVOTAVd G3HOVLLY 43aav LHOddNS TIIM NL B ad
‘S103H TVWHIHLHIMOd 3AIHA SAvolAvdad | A o TVIWHIHL/HIMOd
S.ALS dILTINWHIOHYT LHOddNS N Va ) Woo8a %
OL FHNLONHLS IHOW SIHINDIH NL 1n8 a4 8 NL HO4 133X 1vna S733) ‘IUNLONHLS
HIONVH ATBWISSY ALS NIHLIM STTNAOW SS3Hd OL FHOVLLY | A SHOOTHIV
MOOTHIV STHINDIY NL ‘HLMOHD YOO THIV aH HO4 G3141LN3Al LO3H ON
INMISYE ANOAIE ALITIAVAYD OIN IHINDIH OLATAMINL | A ~ S3TNAOW D01
NH3L1vd 3 1NAON
WO 1HVdV V1 SFHINDIH NL ‘NL JHNLVW HOL ‘QOHd TVIHALYW | A S3INACK av1
ON 1Ng HLOSE HO4 Sav1 13¥00d NL HO4 Z-} ‘a4 Ho4 Sav11Ind g
Va Va S3TNAOWN 8VH
S3SVD HLOd NI S8VH TVNOLLIAay g
SHHVWIH NOSIHVJIWOD NL ad SIN3IW3d
HLMOYD.
\
poauppolft SNOSIHVdNOD all bl

J4AON NOILV1HOdSNVHLl
ANV a®4d OdVv1

DVLE
vevu

Cwmmew i




EVOLUTIONARY SSF TRANSPORTATION NODE

The evolutionary SSF transportation node configuration used as a
baseline design in this study is shown in the figure. The
configuration is represented by the geometric database titled: SS502:
[WAS] REFERENCE and was obtained from NASA/LARC and generated on the
NASA IDEAS**2 SDRC L4.1 LARC 6.1 System Assembly in February 1990.

The transfer of data from the NASA/LARC project relational database
(IDEAS**2) to the Lockheed IDEAS*#*2 system was done through the use of
universal files and is discussed in detail in the Automated Analysis
Tools section of the report. The IDEAS**2 geometric database allows
various organizations to access and evaluate a common geometric
definition of a design concept such as the transportation node option.
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The basic LTV/STV configuration used in the study is shown in the
figure. The LTV core configuration consists of a rigid 13.7m
aerobrake, four ASE engines, propulsion module, and a lunar transit
crew cab which is not utilized as part of the GEO transfer scenario,
but is an integral part of the LTV core vehicle. Two TLI and two LLO
drop tanks are positioned as shown around the core vehicle. The drop
tank attach structures and feedlines are mounted to the core vehicle.
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The LTV/ESGP attachment interface is shown in the fiqure. The LTV
core-mounted adapter and docking mechanism design are identified with
respect to the ESGP end-view configuration.
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MOBILE SERVICING CENTRE CHARACTERISTICS

The MSC is the mobile portion of the MSS, and provides transport and
positioning function on the SSF. It consists of the MRS, which
provides accommodation and positioning for payloads ranging from ORUs
to complete modules, and the MT, which provides mobility for the MscC
along the SSF truss.

The MRS consists of the MBS; the SSRMS; hardware for power, data and
communications sub-systems; tools; locations for the FTS, SPDM, and EVA
work station; and two attachment interfaces for payloads such as ORUs
and pallets. Four sets of video cameras (two with pan and tilt units) |
and lights will be mounted on the MBS. —

The SSRMS is a robotic device used primarily for handling large objects |

on the SSF. The large manipulator arm with 7 DOF has the capability ﬁ—

for capturing, manipulating, and releasing large payloads. Each end of |

the arm is terminated in an end effector which function as an interface

mechanism with the external systems. Force-moment sensors will be v

incorporated at the manipulator tip to provide operational load a

information. The SSRMS is symmetrical about the elbow joint and can

operate from any PDGF as well as the MBS. It has the ability to move ,

from PDGF to PDGF, although it cannot transport a payload in this mode. %
L The SSRMS will have control electronics and processors to operate and i
y control the joints, end effectors, force-moment sensors, and other

equipment in the SSRMS. Four sets of video cameras (two with pan and -

tilt) and lights will be mounted on the SSRMS to provide television a

coverage of the arm operation. .

The MT, which is developed and provided by NASA WP-2, provides the MRS B |
with translation mobility along the SSF truss as well as plane change :

and turning capabilities on the truss. The MT interfaces with the SSF . .

power system at utility ports on the truss and provides that utility
power to the MT/MRS interface for the MRS.
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SPACE STATION REMOTE MANIPULATOR SYSTEM MOBILE TRANSPORTER

The mobile transporter shown in the figure is required to transport the
MSC and its payloads of up to 46000 lbs along the Space Station truss.
Such payloads may include pallets, modules (ESGP elements), EVA
crewmembers, FTS, and other associated equipment. The MT translation
capability for a mass of 20000 lbs is equal to an average rate of

0.018 m/sec. The MT rotation capability for a similar mass is equal to
an average rate of 0.47 deg/sec.
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MOBILE SERVICING CENTRE
ESGP_INTERFACES

The MSC uses the Latching End Effector LEE/PDGP interface to join
payloads to the MRS, and to join the SSRMS to payloads and/or the MRS.

Both end of the SSRMS are equipped with a LEE, which can serve as

either the attachment to the MRS (or suitable truss-mounted) PDGF or to
a payload.

Two LEEs are also furnished on the MRS Payload/ORU Accommodations
Support Assembly (PSA) to support PDGF-equipped payloads.
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MOBILE SERVICING CENTRE - ESGP INTERFACES -

The Power and Data Grapple Fixture (PDGF) shown in the figure is used
for utility transfer to the ESGP. The overall utility transfer
capabilities are included below. The SSRMS has utility transfer
capabilities to support the FTS or SPDM, and to provide keep-alive and
diagnostic utilities for any payload attached to its LEE.

Power

a. The MT is capable of transferring up to TBD (10 kW) of power to the
MRS during stationary operations, and up to TBD (5 kW) of power to
the MRS while the MT is translating, via a hard-wired connection.

b. The MRS is capable of transferring the following power:

1. Up to 0.9 kW of power back to the MT.

2. 1.8 kW for SSRMS, SPDM, and payloads mounted on the MRS, via
the PDGF/LEE interfaces.

3. 2.0 kKW for the FTS mounted on the MRS.
Data/Video

a. Data is transferred among the various MSC components at TBD rates.
Up to 3 video channels are supported.

b. Data is transferred between the various MSC components (MRS, SSRMS)

and payloads at a rate of 16 kbps. Up to 3 video channels are
supported.

c. Data rates to support FTS operations are TBD. Up to 3 video
channels are supported.
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FLIGHT TELEROBOTIC SERVICER CHARACTERISTICS

The FTS has two manipulators; an Attachment, Stabilization, and
Positioning Subsystem (ASPS) for stabilization and worksite attachment;
two pan and tilt body cameras; a wrist camera on each manipulator; and
body attachment point for tools and interchangeable end effectors as
shown in the figure. The manipulators are equipped for force feedback
and are capable of simultaneous coordinated control.

The FTS manipulators are 59 inches long and have 7 DOF. The
manipulators provide 6 fully-controllable degrees of freedom (shoulder
yaw and pitch, elbow pitch, wrist pitch, yaw and roll) with a single
indexed roll DOF at the shoulder.
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FLIGHT TELEROBOTIC SERVICER - ESGP INTERFACES ‘_ﬁ
;
The major interface between the FTS and the SSRMS of the MSC base fﬁ
structure is shown in the figure. There are two PDGF interface

locations identified for the FTS. :
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FLIGHT TELEROBOTIC SERVICE - ESGP INTERFACES -

FTS/ESGP INTERFACE (s)

FTS primarily interfaces with payloads thorugh end effectors mounted on
its two manipulators. The figure shows FTS/ESGP interfaces.
Structural and utility resource interfaces are identified below:

Structural

FTS can grasp/attach to many objects with its standard end effectors
and tools, including EVA handrails.

Power
Power is provided via the end-of-arm tooling/payload interface.
Data/Video

Data/video is provided via the end-of-arm tooling/payload interface.

Thermal

FTS has no active thermal interface to payloads.
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FLIGHT TELEROBOTIC SERVICER - ESGP_ INTERFACES

Individual end effector interfaces for the FTS are shown in the figure.
The end effectors for truss assembly, module retention system, and
fluid coupler functions represent major ESGP interface requirements.

76

N



LL

V34 '
D
T

¥ _u.zzow (B4 NOILYINEN]
Qvi ONim VA 1098 JIOHAIN NIV YILINW AOOM-P VINISYS YA OVD
\ A8 OYOMONYN YAD |
mmmmw i ()

Cwnenod ainv| MNV4 WOLVIOVE TVIVINL 1IHIEVEI0/NSEY  SEnWL

=S30V4d3INI dDS3 - D2
HIDIAHIS O1LOE0HITAL LHOINd IOHVLE

Evu




il I a1 i &

INTENTIONALLY BLANK

. 1



6L

paay01lt

SINIWIHIND3Y

PRECEDING PAGE BLANK NOT FILMED

3OV44H3L1NI
W3LSAS
4SS

L

e et ) ) *

_ — S




SSF systems operations requirements for the Advanced ESGP consist of
the following elements: ocvowm and Multipurpose Application Console.

Systems control requirements while viewing ESGP assembly operations
from a cupola include:

Station manipulators

mﬁm?wos manipulator transporter | - ﬁ

FTS W W ! L
wwwfnwsu of any unmanned oossm:QmVﬁm <m=P0Hm within the nosamnn m:a
Control Zone (CCZ)

External video cameras and lights msm internal (cupola) video
monitors

Any visual mwwmsamﬁﬂ range, or angle sighting devices

Internal and external voice communications

Systems ao:ﬁHOP m:ﬁﬂHOSm available through DMS access

Systems control Hmaaﬁﬂmam:ﬁm from a Multipurpose bvapowﬁHOS Console
(MPAC) for ESGP assembly operations include:

Safety critical payload safing
Element-unique payload safing
Element-unique systems operations

Test and checkout of element-unique systems
Element-hosted payload operations (a designated MPAC) will serve
attached payloads)

Access to all appropriate and authorized ovmﬂmﬁwo:m Management
Systems Aozmv functions

Internal <o~nm. video, and HmQOHaWH operations
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AL L

PASSIVE THERMAL CONTROL SYSTEM - MOBILE SERVICING SYSTEM -

The passive thermal control system requirements for the MSS and other
elements are shown in the figure.

Selective surface coatings, heaters, heat pipes, insulation and
isolators are provided for environmental protection and to control
structural and externally mounted equipment temperatures. Pallet
mounted equipment will be thermally controlled using passive thermal
control when practical from a location and available passive radiator
surface standpoint. The heat rejection on each resource pallet will be
limited to a maximum steady state value of 1.2 kW with a short term
peak not to exceed 1.5 kW based on a maximum heat rejection temeprature
of 85 degrees F and a radiator direct space viewing of at least 80
percent. The pallet design shall provide sufficient area to meet the
net heat rejection requirements, and shall be located to provide
adequate heat rejection capability. The ORU equipment baseplate
temperature for any Space Station distributed systems which are located
on the resource pallets are <= 85 degrees F for nominal operations.
Peak power excursions will be limited to 122 degrees F.

82

]
!

=



£8

, SAV(IAVd Pue 3VdV
dVS ANV Sl1d
LW puvy W ‘DS
SOV
" TIVNYALNI
Wodd —> weisAsg
jonuo) puy Jojjuoy
_w SOLY — SOl
. TIVNYALNI
| OL h a
|
! si0lUeH siejewiningd
_ weisAs weisAs
{041u0D 40jjuocin
h 1 y 1 y *
eousjug 1o uopv|os) Supvey
puy uojjoejoid (LTI IVER jsiusweiddng
uonepey jswiey] eplaoad epjaoad
epjAcid
1 1 1
-
S1USWUOIAUT
e puv sisAjeuy
jewiiey) epjAcid
-

poapporse - INFLSAS DONIOIAHAS 190N -
WILSAS TOHLNOD
TVINH3HL 3AISSVd

24917
DVIE
<=vu

S

- - Cing® - -




GUIDANCE, NAVIGATION & CONTROL =~ MOBILE SERVICING SYSTEM -

The GN&C to MSS interface requirements are shown in the figure.

The core GN&C subsystem interfaces with the MSS to provide for
coordinated operations of the MSS within GN&C prescribed constraint
envelopes. These constraint envelopes on the MSS shall consist of
point-of-resolution displacement, rate, and force and torque 1limits
relative to TBD reference frame. To support adaptation of attitude
state maintenance to the operation to the MSS, the MSS must provide
point-of-resolution displacement, rate, and forces and torques relative
to the TBD reference frame to the GN&C system. In addition, the Mss
will provide payload identification for the payload which it is
maneuvering. These data are required by the GN&C system to perform
mass properties extraction and momentum management.
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ELECTRICAL POWER SYSTEM - MOBILE SERVICING SYSTEM -

The EPS/MSS interface requirements are shown in the figure.

Interface A is defined as the output of the DC-to-DC converter unit
(DDCU) .

Interface B is at the end of the power cable connecting the secondary
power distribution assembly (SPDA) to the pallet, utility port, rack or
other secondary power unit. The SPDA is an assembly consisting of
Remote Power Controller Modules (RPCM), a central utility rail wich
provides power and data connections, and a cold plate. The utility
rail and cold plate are element unique.

Interface C is at the input to the consumers equipment or at the end of
the power cable connecting the tertiary power distribution assembly
(TPDA) to the consumer equipment, if applicable.

The TPDA is an assembly consisting of RPCMs, power and data
connections, and a cold plate. TPDA cold plate and mounting structure
are element unique. '

The EPS architecture of the MSS consists of two DDCUs, SPDAs and
associated cables as shown in the figure. The DDCUs provide voltage
regulation and ensure element isolation for a single-point ground. DC
distribution power is provided to the MSS from two independent MBSU
power feeders (one port and one starboard), one to each of the DDCUs.
Each feeder 1is rated at 6.25 kW peak. The outputs of the DDCU
transformers are tied together at the MSC single-point ground and then
connected to the Station single-point ground.
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COMMUNTICATIONS & TRACKING w&memz - MOBILE SERVICING SYSTEM -

The space-to-space subsysten provides RF communications between the
space station and compatible interoperating elements operating within
the space station proximity zone and command and control zone. A

functional block diagram of the space-to-space subsystem is shown in
the figure.

The MSS communications function is implemented solely on the MSC and
provides an RF link interface to exchange data with the space station

via the space-to-space subsystem. The following functions are provided
by the Mss:

A. Transmission of 3 simultaneous color television signals originated
by MSC-mounted television cameras.

B. RF reception of digital data and space station time reference

transmitted from the space station to the MSC for control of the
MScC.

C. RF transmission of telemetry data from the MSC to the space
station.

D. Reception of orderwire data from the space station for MSC RF-
" terminal control and transmission of RF-terminal status and
performance data to the space station C&T system.
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SSF CONTAMINATION CONTROI, REQUIREMENTS

The detailed implementation methods, controls, and responsibilities
which are necessary to ensure external contamination requirements are
met will be included in the Space Station Contamination Control Plan.

Some preliminary requirements associated with payloads such as the
Advanced ESGP are summarized in the figure.

Requirements associated with vehicle processing in the assembly or
servicing area include particulate deposition and molecular deposition

as measured on a 300 K surface with an acceptance angle of 2 pi
steradians.

During transfer of payload elements, component cleanliness levels will
be maintained.

It is assumed that contamination covers and shields will be in place on

all elements with optical sensors from shuttle launch until the final
launch readiness sequence at SSF.
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LAUNCH VEHICLE PAYLOAD BAY DIMENSIONS

The payload capabilities for both the Shuttle and Shuttle-C vehicles
are shown in the figure. Both vehicles are capable of delivering the
ESGP elements to the SSF orbit.

Two Shuttle launches are required to deliver all of the ESGP elements.

All ESGP elements except for the truss assembly fixture can be
accommodated in the Shuttle-C payload bay.
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ADVANCED ESGP SHUTTLE LAUNCH ONE CONFIGURATION

The Shuttle was selected as the launch vehicle for the Advanced ESGP.

The figure shows the Shuttle launch one configuration for the Advanced
ESGP and illustrates the stowed condition of the 7m antenna assembly,
the two equipment subsystem modules, and the truss assembly fixture.
The docking module assembly is shown at station 582.00.
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ADVANCED ESGP SHUTTLE LAUNCH TWO CONFIGURATION

The figure shows the Shuttle launch two configuration for the Advanced
ESGP and illustrates the stowed condition of the 20m antenna assembly,
and the north and south science module assemblies. The docking module
assembly is shown at station 582.00.
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ADVANCED ESGP SHUTTLE-C LAUNCH CONFIGURATION

Although not selected as the baseline delivery launch vehicle, the
configuration for a Shuttle-C launch is shown in the figure. All

Advanced ESGP elements except for the platform truss assembly fixture
can be accommodated in the Shuttle-C shroud.
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ADVANCED ESGP SCIENCE MODULE LAUNCH CONFIGURATION

The confiquration for launch of the Advanced ESGP science modules is

shown in the figure. The shuttle cargo bay interfaces/attachment
points are identified for structural support.
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STV _VELOCITY RE Cmez,mz,H.m FOR ESGP DELIVERY

A two-impulse all-propulsive delivery is optimal, since energy
requirement and hence propellant requirements, are minimized with this
method. The plane change angle for delivery is 238.5 deg requiring a
delta V of approximately 13800 ft/sec (fps). The impulse distribution
is 7970 fps at GEO transfer orbit insertion and 5830 fps at GEO orbit
insertion. Impulse transfer to GEO from the SSF in a 200 nm, 28.5 deg
inclined orbit would begin with a large (8000 fps) POSIGRADE burn at
the STV crosses the equator. This raises apogee to the GEO altitude of

19323 nm and makes 2.2 deg of the plane change. At apogee, a second .

burn of 6000 fps circularizes the orbit and provides the ramainder of
the plane change (26.3 deg). The standard geosynchronous transfer
orbit will be used in the platform delivery mission. The STV-ESGP will
incur a 180 deg longitude change during the transfer while the Earth
will rotate almost 80 deg during the 5.25 hour transfer. Minimization
of costly orbit plane change maneuvers dictate that the STV inject the
ESGP into the GEO transfer orbit at or near the equator. The time of
the GEO transfer injection will be based on a nodal crossing

ovwowﬁcswﬁwsﬁwnwwwmommﬁ:m vwmnm0H5£Wﬁ:M=Nmmmoomﬁsmammwwmm
longitude. A
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TIMELINE FOR ESGP DELIVERY TO GEO

The figure shows the event timeline, orbital parameters, and velocity
requirements for ESGP delivery to GEO.

This phase of the ESGP delivery operations includes STV support
operations to payload activation, checkout and the physical release of
the platform from the STV. After release, the STV will perform a
retrograde separation maneuver to move away from the platform. This
separation maneuver should be initiated near the SSF orbit plane node
to minimize performance requirements of the returning STV. A velocity

requirement of 20 fps is assumed adequate for completion of this
maneuver.

Although not included in the timeline, the space-based STVs
aerobraking/aeromaneuvering capabilities will be employed in the return
to SSF. The aerobraking substitutes dissipation of orbital energy for
STV propulsion. The STV will be inserted into transfer orbit to LEO
and then a LEO parking orbit prior to SSF rendezvous. The LEO transfer
will bring the STV to 400,000 ft altitude to dissipate orbital energy
and hence lower apogee from 19323 nm to 400 nm. As in GEO, the
majority of the orbital plane change (26.3 deg) will occur in the
transfer phase. The STV will coast to the 400 nm apogee an perform
maneuvers to circularize this orbit.
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STV _RETURN TO SPACE STATION Y

The STV will ooswwmﬂm at least two orbital revolutions (200 min) in the N
LEO parking orbit prior to transferring to SSF at the 200 nm altitude. :
This will be required for data acquisition, processing and any required - , i
command activities associated with STV/SSF rendezvous. The STV will , y
then be inserted into a phasing orbit and finally a height adjustment ¢
maneuver will be performed to place the STV 15 nm behind SSF.
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The STV terminal rendezvous maneuvers will be performed for STV capture ?
by SSF. The STV will trail SSF for at least two orbits. The provides ;
an opportunity to complete any STV reconfiguration functions that may
be required. After the STV has been prepared for rendezvous
operations, maneuvers are performed to bring the STV to the SSF.
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The following assumptions concerning facility, equipment, and processes
were made for the analysis of assembly and processing of the ESGP
vehicle.

The shuttle vehicle was selected as the Advanced ESGP launch vehicle

and two shuttle launches are required to lift all ESGP elements to the
SSF. |

The ”:m:omﬂ facility will be an enclosed structure to provide
micrometeorite, thermal and sun-impingement protection. A section of
the enclosed structure will be opened to enable transfer of equipment.

The ESGP platform truss assembly operations will take place on an
assembly work platform located on the lower keel.

Two mobile servicing centers will be Wmawam‘nmn to the assembly and

processing of the Advanced ESGP. W 2 !
it W

All fueling will be performed at a co-orbiting PTF. The fully

assembled ESGP will be transported to the PTF using an OMV-like

vehicle. The mating of the ESGP and LTV will take place on the PTF.

| | |

| o . |
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ESGP memzmﬁK CONFIGURATION AT SSF

The assembly operation locations are identified on the figure. There
are four specific locations involved in ESGP assembly and processing.

Area 1 is the shuttle docking area and payload bay where ESGP elements
are removed from the shuttle.

Area 2 is the ESGP platform assembly area on the lower keel and
contains the Assembly Work Platform (AWP) .

Area 3 is the hangar assembly and storage area which is used to store
the ESGP elements and the FTS.

Area 4 is the propellant tank farm (PTF) where fueling operations are
conducted. The PTF is in co-orbit with SSF.
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1. SHUTTLE DOCKING AREA - P/L BAY
2. PLATFORM ASSEMBLY AREA - LOWER KEEL
3. HANGAR ASSEMBLY & STORAGE AREA
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4. PROPELLANT TANK FARM - CO-ORB PLATFORM
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INTEGRATED SODAS, CIEM AND CIMSTATION SYSTEM INTERFACE

Specific representative events in the mission scnearios created by
SODAS can be decomposed into FTS and MSC robotic primitives and used
for time-motion studies. These primitives can be used to build three-
dimensional solid models using the Lockheed-developed CIEM System. As
shown in the figure, the CIEM-generated geometric solid models of the
mechanical components are then used by the robotic simulator system
CimStation. CimStation is used to integrate the geometric models with
the dynamics models of the mechanical components and operations models
of the 1low-level servocontrol software to produce three-dimensional
animations of robotic manipulators.

EVA, IVA, and robotic work analyses, combined with the timelines, cost,

and resources and crew requirements analyses can be used to detemine
trade-offs between EVA, IVA, telerobotic, and robotic operations.
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INTEGRATED SPACE OPERATIONS MODELING AND >zwh<mHm,m<mHm3

The figure shows the planned Integrated Space Operations Modeling and
Analysis System that is required to complete a detailed on-orbit
assembly/servicing study. Lockheed recognizes that vehicle and mission
design is dynamic at the present stage of Advanced Geostationary
Platform definition. To respond to evolving vehicle definition,
automated analysis tools are needed. For NASA/LaRC, CTA developed the
Space Operations Database and Analysis System (SODAS), which includes
the Vehicle Processing Operations Database (VPOD), the Science Missions
Operations Database (SMOD), and SSF Freedom Operations Database (FOD) .
The Tools for Operations Modeling and Analysis in Space (TOMAS) models
on-orbit operations and SSF resources.and physical conditions such as
communications and viewing interfaces and impacts, and is used to
assess integrated requirements at SSF.
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VPOD EVENTS HIERARCHY -~ EXAMPLE -

The Vehicle Processing Operations Database (VPOD) is an element of the
Space Operations Database and Analysis System (SODAS) and was used in
this analysis for the hierarchial decomposition and sequencing of
events that need to be performed to assemble and process Advanced ESGP
vehicles at the SSF.

GMPBQ the functional hierarchy, the events necessary to meet a goal or
mission (e.g. Assembly of the ESGP) can be defined at several levels of
detail, with lower levels providing greater resolution of the assembly
process.

A complete description of VPOD and SODAS is included in Appendix C.
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ASSEMBLY OPERATIONS FUNCTIONAL FLOWS

A top level functional flow of ESGP assembly operations is included in
the figqures. The functional flow includes the assembly task, the
operations location, the crew operations (EVA/IVA) and equipment
resource requirements.

The assembly tasks are described for four major event categories:

1: Assemble Geoplatform vehicle

2: Verify Geoplatform vehicle operation

3: Fueling of the Geostationary vehicle

4: Launching of the Geostationary vehicle
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ADVANCED ESGP TRANSFER FROM SHUTTLE TO SSF

The figure shows the docking location of the shuttle at SSF. The
Advanced ESGP elements shown in the shuttle payload bay are transferred
to the SSF by the SSRMS of the Mobile Servicing Centre.
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ADVANCED ESGP ASSEMBLY PLATFORM:

The figure shows the first stage of the ESGP assembly process.
dedicated mobile transporter assembly is used to accommodate the ESGP

Assembly Work Platform (AWP).
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ADVANCED ESGP ASSEMBLY WORK PLATFORM

The Assembly Work Platform, shown in the fiqure, is similar to the one
used during initial SSF assembly operations. The AWP is used to store

the longeron, diagonal and node cannisters used to construct the ESGP
platform.
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ADVANCED ESGP PLATFORM TRUSS ASSEMBLY

The figure shows the configuration used to construct the ESGP platform.
Two SSRMS arms are used on the MSC. One SSRMS is mated with an FTS
that is used to remove the individual truss elements from the canisters
and install them on the platform assembly. A detailed task analysis of
the FTS truss assembly sequence is included and is the basis for time
estimates in the top-level functional flow analyses.
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MODULE TRANSFER CONSTRAINT TO ADVANCED ESGP

The maximum SSRMS operation envelope for ESGP assembly is shown in the

figure. Details of the SSRMS characteristics are included in Appendix
B.
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MODULE TRANSFER TO ADVANCED ESGP

The attachment of ESGP elements on the completed truss assembly is
shown in the figure. The attachment is done on a standard interface

assenmbly. Two MSC's are required to complete module transfer on the
ESGP platform assembly.
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ADVANCED ESGP IN HANGAR ASSEMBLY - VOLUMETRIC REOUIREMENT -

The ESGP assembly assumptions indicated that the primary assembly area
for the ESGP platform truss is the lower keel area. If the hangar
facility area was used to construct the ESGP, it would require a

significant increase in size and additional bottom truss support as
indicated in the figure.

An external volume of 57.5m x 20m x 35m would be required for assembly
of the ESGP vehicle.

The double truss assembly hangar external volume requirement shown on
the bottom of the figure is 35m x 35m x 17.5m; however, the two truss
elements would have to be mated outside of the hangar assembly facility
and again require additional bottom truss support.
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b P , ,H
PTF TRANSFER CONFIGURATION AT SSF 2 , :

The completed ESGP vehicle is transferred to the PTF from SSF using an |
OMV-like vehicle. The ESGP/OMV interface is shown in the figure. A
three point docking mechanism is used in the interface design.
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FTS STRUCTURAL ASSEMBLY TASK ANALYSIS

The Vehicle Operations Database was used to develop the operational
scenario for the FTS structural analysis.

The process begins with a detailed understanding of each procedural
step, and emphasizes involvement of crew systems engineers with
significant space-related operations experience throughout the scenario
development process. The product of the approach (shown in the figure)
is a step-by-step analysis of each task in the overall scenario, with
step performance times, FTS appendage utilization, FTS vision system
utilization, FTS work station control functions, and significant
support equipment reuirements identified for each step.
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LMSC TIMELINE ANALYSIS OF FTS TRUSS BAY ASSEMBLY

The figure shows the results of a FIS Truss Bay Assembly simulation
performed at Lockheed (LMSC) using the SILMA robotic simulation
software CIMSTATION run on a Silicon Graphics 3130 work station.

Functional timeline analyses of these and other simulations were used
for comparison with FTS task functional analysis. Comparative FTS
timeline analysis shown in the figure indicates a much longer time
required (up to 157 minutes in one estimation) for telerobotic assembly
of truss bays. The joint Lockheed-Silma Inc. assembly simulation,
included in the report in reference (7), indicates substantially long
truss bay assembly durations using the FTS.

The simulation proved to be a useful design tool because the ease of
simulation allows many alternatives to be explored. After the original
geometries and kinematics are defined, different scenarios can be
created quickly. Some scenarios wﬂ<mmnwamﬁmm the design issues of:
(1) optimal assembly sequence, (2) identification of high-risk areas
for collisions, (3) camera appendage interference, (4) assembly time,
(5) design tradeoffs for base location and attachment points to
workpiece, (6) controlling the robot in interactive mode, (7) realtime
simulation speed tradeoffs, (8) lighting conditions and (9) DoF of
appendages, link lengths, and total reach.
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NEUTRAIL BUOYANCY STMULATION OF SSF TRUSS BAY ASSEMBLY

Lockheed has completed an internally-funded project on Space Station

Assembly Technology (SSAT) which was used to evaluate EVA assembly of
the SSF truss assembly.

The figure shows SSAT Program underwater test simulation of EVA Space

Station truss installation (FEL Task no. 1). Functional timeline
analyses of these and other simulations are used for comparison with
FTS task functional analysis. As detailed in the Space Station

Assembly Techniques and Structures report contained in reference (7),

duration of assembly for one truss bay by EVA underwater simulation was
204 seconds.

156

W [ ] T |

1
]

==

=



00 SRR L

NEUTRAL BUOYANCY SIMULATION

NAS

OF SSF TRUSS BAY ASSEMBLY

SraCe

- rLICKC

<= rlockheed

- LMSC / SSAT -

157

ORIGINAL pAG
OF £IS

POOR QuALTY



OVERALL ON-ORBIT LTV TURNAROUND FLOW

An overall generic timeline for Lunar vehicle turnaround (Lunar vehicle
proximity operations at SSF through propellant load and launch) is
shown in the figure. This timeline of 121 shifts is a summation of the
subtask timelines for refurbishment of each major engineering system,
with parallel operations incorporated where feasible. Contingency ORU
replacements are not included in the overall turnaround timeline. The
timeline data was obtained from reference (18).
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BASELINE ESGP LEQ CHECK-OUT SSF INTERFACES

The ESGP/SSF interfaces required for LEO check-out are identified in
the figure. Several Communication and Tracking links are possible from
the SSF depending on the location of the ESGP depending on the location
of the ESGP vehicle during launch readiness testing. Both the TDRSS
and direct broadcast 1link (limited coverage) will be wused during
checkout activities. |

A complete launch readiness test will be performed after mating with

the LTV/STV and the ESGP is in close proximity (co-orbiting platform)
with SSF.
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EVOLUTIONARY SSF_RESOURCE REQUIREMENTS

The SSF resource requirements are contained in the figure.
level assembly operations functional flow was used to
requirements in the following areas:

O SSF Facility Interface

o SSF Facility Cupolas and OPS/COMM Module

¢ RF Interfaces

o Data Management

o Electrical Power

o Fluids
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A summary of the ESGP/SSF resource requirements are included in the

figure. Requirements are identified in the following areas:

o]

(o]

EVOLUTIONARY SSF RESOURCE REQUIREMENTS

Total Mass
Total Power
External Volume
Internal Volume
Robotics

EVA/IVA Crew Time
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The SSF Servicing System architecture is shown in the figure. The
Advanced ESGP will require the following major interfaces to be
established for servicing at SSF.

o Large Structure Assembly Area - Platform

o mmH<thﬂa Facility - wmmﬁ module elements

o wwcwmwwmmcwﬁww mcvmwmﬁmaﬁx Argon cryogen

o IVA mmH<HoH:E Control - Command and control
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INTEGRATED OPERATIONS PLIANNING FOR SSF ESGP SERVICING

The overall integrated operations planning concept developed by IMSC
for SSF customer servicing on Work Package 3 consists of servicing
operations models, verified operations plans, and servicing operations
planning output.

The servicing operations model consists of three computerized units.
One 1is the scenario generator previously described that models the
maintenance and servicing operations. The second is the servicing
operations simulator to verify fit and function of hardware and
scenario task relationships. The third is a spares/parts manager that
lists ORUs, components, etc., and was not utilized in the study effort.

When used interactively, the models can provide inputs to the verified
operations plans which generate the servicing work orders, the
verified mission model, and the logistics management model. These
three are then combined into the servicing scenario and resource list.

The verified operations plan is then used to generate the individual
outputs needed for the actual customer servicing function including:

Scenarios and timelines Trades and resource requirements

Servicing function ICDs Spares/parts lists and their STS
manifest

Servicing facility Customer and vendor interface

assembly and servicing requirements training materials

documentation

The integrated servicing operations planning and mission scenario
generation provides a total package in on-orbit servicing planning,
resource management and support services planning. It provides
resource/logistics requirements, orbiter manifesting needs, timelines,
and customer support interfaces by providing input data to logistics
management, STS manifests, NASA centers, and customer/vendor pipelines.
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MASTER SERVICING FUNCTION LIST - ACTIVITY FILE -

An activity file shown the interfaces of each task with other tasks
contained in the "master activity file"™ (generic) for servicing and
maintenance at the SSF. The file shown in the figure is produced by
LMSC from trades and analyses, historical data, simulations, etc., for
permanent entry into the database. The top-level functional flow for
any servicing mission consists of: receipt of the servicing work
order (10,000 series), preparation for the mission (20,000 series),
conduct of mission (30,000 series), and post-mission activities
(40,000 series).
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BATTERY CHANGEOUT FUNCTIONAL FLOW NETWORK

A functional flow network example is included for an analysis of a
battery ORU changeout task. The task flow networks and related
approaches are used to define (1) the major activities or functions

that need to be done, (2) the times at which they are done and (3) the
interaction among the various tasks.

Each element in the network indicates the functions performed, the

completion time required (based on ground simulations) and the EVA and
IVA crew members participating in that function.
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The Servicing Resource Requirements for the Evolutionary SSF are
included in the figure. In addition to the previously identified
customer servicing facility requirements for servicing of ESGP module
elements, the following requirement areas are identified:

o Total Mass

o Total Power - W 3 W !

o External Volume | |

o Internal Volume

o Robotics

o Customer Servicing Facility
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CONCLUSIONS

The SSF transportation node concept could serve to accommodate on-orbit
assembly of an Advanced Earth Science Geostationary Platform. Assembly
of the truss structure of the Advanced ESGP can be done either via a
telerobotic mode or a mode that involves cooperative EVA and

telerobotic operations. In addition, the Mobile Servicing Centre
provides assembly and maintenance support functions for platform
assembly and element installation. Advanced ESGP assembly operations

require much less utilization of SSF resources than similar processing
operations for LTVs.

Staging of the Advanced ESGP at the SSF relieves SI size constraints by
allowing incremental launches and on-orbit assembly. In addition, this
approach allows cryogen top-off of SIs that require it, reducing SI
launch weights. Finally, the availability of a limited SI checkout
capability prior to insertion into the operational geostationary orbit
significantly reduces operations risks associated with a large complex
platform. W
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RECOMMENDATIONS

Computer based automation analysis tools such as the Space Operations
Data Analysis System (SODAS) and the robotic simulation, CIMSTATION,
are required to provide a standardized analysis of on-orbit assembly

operations studies and reduce study completion times. The various
databases allow standard methods of finite resource allcoation to be
established using periodic tracking and margin assessment. These

control tools help manage resources critical to the evolution SSF such
as power, space, volume, EVA time, and IVA time.

On-orbit assembly techniques must be evaluated with respoect to EVA and
robotic activities to optimize evolution SSF productivity. Since EVA
will have higher risks and is a more costly and scarce resource than
IVA teleoperations, the first goal is to eliminate or minimize EVA
through all means possible, including review of assembly and packaging
strategy and emphasizing IVA telerobotics and robotics capabilities.

Dynamic analysis studies need to be performed to complement the
CIMSTATION kinematic simulations. These studies can be initiated with
a number of different dynamic analysis software packages. With the
CIEM system, the modal and dynamic analysis modules ARCD and ATTPRED
can be used. Lockheed also has multibody dynamics modeling capability
with the DYNACON and AUTOLEV simulation programs. Finally, the
CIMSTATION dynamics package can be used to study the robotic simulation
of all rigid-body effects associated with the various manipulators.

Utilization of a separate propellant tank farm or co-orbiting platform
will minimize contamination issues for both the evolution SSF and the
Advanced ESGP payload and instrumentation.

The on-orbit assembly techniques evaluated for the Advanced ESGP
facility resulted in the requirement for a second Mobile Servicing
Centre (MSC) to be positioned at the platform assembly site. The
evolution SSF Transportation Node currently provides a two MSC
capability. :
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ADVANCED ESGP MICROWAVE RADIOMETERS

The driving requirements for the microwave radiometers are presented on
the accompanying chart. Although 4 microwave radiometers are featured
in the Advanced ESGP strawman payload, it is reasonable to expect that
only 2, the Low Frequency Microwave Radiometer (LFMR) and the
Microwave Sounder/Imager (MSI), will be used for detailed studies. The
other two will likely be used for general surveys and their resulting
smaller diameter will not be a design driver.

The 20m diameter for the LFMR can be realized using a deployable mesh-
type antenna. 1In spite of the fact that it is deployable, the size of
the package is likely to require attachment of the antenna package to
the ESGP at the Space Station prior to transfer to the geostationary
orbit.

The 7m diameter MSI will use a solid design antenna and will be
required to have a high surface contour accuracy. As this type of
antenna is currently feasible, no unique Space Station support
requirements are anticipated.
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CONSIDERATIONS

The basic requirement for microwave radiometers for the Advanced ESGP
is for a nearly constant resolution over the entire bandwidth of
interest. °= This ensures that various atmospheric structures and
phenomena of interest that are examined to the same degree of detail,
in spite of the microwave channel being used.

This resolution requirement raises a dilemma in the case of microwave

radiometers. For observations at frequencies less than 50 GHz, mesh
antenna designs are permissible, allowing light-weight stowable and
relatively inexpensive designs to be developed. As shall be shown,
high spatial resolution at the 1low frequencies requires a large
diameter antenna.

However, to avoid transmission loss at higher frequencies, a solid
antenna is preferred for observations conducted at frequencies that
exceed 50 GHz. The solid antenna requirements are further complicated
by the necessity of a high surface contour accuracy required for
observations at frequencies greater than 200 GHz. Such a design is
impractical for the large diameter antenna required for low frequency
radiometer, necessitating a second, smaller radiometer dedicated for
high spatial resolution at higher frequencies.
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MICROWAVE SENSOR MEASUREMENTS/FREQUENCIES

Some of the more important parameters which are expected to be measured
by the Advanced ESGP microwave radiometers, together with the
frequencies at which these measurements are made are shown on the
accompanying table. The frequencies shown are "generic" in the sense’
that, except for temperature and pressure soundings where the
frequencies are determined by specific molecular resonances, the
measurements can generally be made over a broad range of frequencies

and engineering considerations will 1likely determine the specific-
choice.

The 1large number of parameters requiring measurement at multiple
frequencies allows the competing geophysical phenomena which normally
contribute to the detected radiance to be identified. An example is
the measurement of sea ice. Ice has a much different emissivity than
water and, therefore, can be readily distinguished. Because of this,
the areal extent of ice can be distinquished at any of a wide range of
frequencies. On the other hand, microwave radiation penetrates ice and
scatters from inclusions such as pockets of brine. These change whith.
the age of the ice and affect its emissivity. By comparing emissivity'
at several frequencies, one can distinguish first-year ice from

multiyear ice and in some circumstances distinguish other properties of
the ice.
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MICROWAVE RADIOMETER PARAMETRIC SIZING

Spatial resolution as a function of frequency for various microwave
radiometer antenna diameters is illustrated on the following page. The
figure was prepared using the mncmﬂHOS found in Wilson and Swanson
(1988)*. The plot assumes that the microwave radiometer is pointed at
the nadir, allowing maximum resolution (resolution decreases as a
function of the radiometer slant range).

The plot shows that for an antenna of a mp<m: diameter, spatial
resolution increases as the operating frequency increases.

* Wilson, W.J., and Swanson, P.N., 1988, "Millimeter Radiometer System
Technology." Presentation to NASA emow:OHOQ% Workshop on Earth Science
Geostationary Platforms, September 1988.
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The temperature sounding, precipitation monitoring and water vapor and
cloud measurement requirements of the microwave radiometer is given on
the accompanying chart. The chart was derived from data contained in a

document issued by the Geostationary Platform Earth Science Steering
Committee on Jan. 20, 1988.

Atmospheric temperature profiles are measured by using sets of
frequencies and combining the data from several channels for which the
altitudes of peak response are each separated by several kilometers,
yielding vertical resolution of several kilometers. The volume
scattering by precipitation at frequencies above 40 GHz causes
brightness temperature depressions whose magnitudes are related to the
aboundance of precipitation, primarily above the freezing level. Water
vapor profiles over the ocean can be monitored well because at 100 GHz
the atmosphere is sufficiently transparent that the reflective ocean
surface provides a cold background against which the integrated water
vapor emits approximately linearly. In addition, clouds exhibit a
radiometrically warm signal against the radiometrically cold ocean
surface and benefit from the lower frequencies (such as 31 GHz) which

allow better cloud water dynamic range and a colder oceanic background
with which to contrast.

It was assumed that for an Advanced ESGP, at least the adequate and
preferably the ideal requirements would be met for the microwave
radiometer. In the case of precipitation measurements of 10 km
resolution at 6 GHz requiring a 214m diameter dish, a reasonable
compromise was arrived at through consultation with NASA/MSFC of a 20
meter diameter LFMR giving 36km resolution at 18 GHz. The higher
frequency requirements of the Microwave Sounder/Imager can be met by an

approximately 7m diameter dish giving a resolution of up to 20 km over
the bandwidth of interest.
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MICROWAVE RADIOMETER ANTENNA DIAMETER

The final chart of this section illustrates the spatial resolution as a
function of frequency that will be realized with the LFMR and the MIS.

The vertical line labeled "MSI" shows the spatial resolution for the 7m
MST antenna. It can be seen that for the lower frequencies (55 GHz),
that the spatial resolution is on the order of 40km, with resolution
increasing to about 15km at 118 GHz and better than 10 km at 183 GHz.

The vertical line labeled "LFMR" shows the spatial resolution for the
20m LFMR antenna. At the lower operating frequency of 18 GHz, spatial

resolution is approximately 40km with performance increasing to nearly
10km resolution at 55 GHz.
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IMAGER OBJECTIVES OVERVIEW

At the current time, objectives exist for the ESGP Geostationary Earth
Processes Spectrometer (GEPS) and the High Resolution Earth Processes
Imaging (HEPI). It is likely that similar objectives will exist for
the Advanced ESGP imagers, with the only major modification being
higher spatial resolution especially at long-wavelength infrared
spectral regions. ,

Another swuoﬂ difference in the nature of the ESGP and Advanced ESGP
imagers is that the GEPS and HEPI are sized to meet 80 to 90 percent
of their ocumnﬁw<mm at a nominal spatial resolution. The next
generation imagers are likely to be sized to meet at least 90 percent
of their OUumnﬂw<mm at a maximum spatial resolution, resulting in a
larger diameter mirror, with the concomitant packaging and smpowﬂ
impacts associated with increasing the mirror diameter of an imaging
instrument.
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MIRROR SIZE CONSIDERATIONS

The major items of consideration with Hmamﬂa to imager mirror size are
listed on the accompanying chart. The primary driver of mirror size is
not only the Hmncwﬂmn spatial resolution but the wavelength that the
high resolution is required. As shall be m:ot:. wwov resolution
observations in the long-wavelength infrared regime require much higher
mirror diameters than similar resolutions in visible wavelengths.

The large mirror diameter not only influences the packaging of the
associated instrument, but also the weight of the instrument as the
weight of a mirror increases proportionally to the square of the

diameter of the mirror (provided that the mirror thickness remains
constant).

In waawﬂwo:. the high spatial resolution can only be accomplished if
the mirror is held steady to alleviate blurring. Accordingly, the

higher the spatial resolution, the more stringent the pointing
requirements imposed on the platform.

When the pointing stability issue is considered with regard to the
entire platform, it becomes clear that it is likely to be expensive and
complex to provide an ultra-stable Uowsﬂp:o capability that can only be
utilized by a 1limited number of imaging instruments. Rather, the
logical solution is to have an instrument-internal precise pointing
capability for any imagers with large and/or heavy mirrors.
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RESOLUTION AND APERTURE AS A FUNCTION OF WAVELENGTH

To illustrate the relationships between spatial resolution, wavelength
and required mirror apertures, the following equation was used to
determine that for a mirror of a given diameter, the resoluiton
decreases as a function of wavelength. Similarly, high resolution at
longer wavelengths requires a larger mirror than if the same resolution
was required at shorter wavelengths.

= 1.2 HA/ D

spatial resolution
wavelength

mirror aperture

= Platform altitude (35760 km)

ToO>»>x =
]

These effects are clearly illustrated in the accompanying figures,
which are a plot of mirror aperture as a function of wavelength for
spatial resolutions ranging from 30 to 1000 meters, and a similar plot
with resolution plotted as a function of wavelength for mirror
apertures ranging from 0.5 to 2.5 meters.
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IMAGER OBJECTIVES

It has already been shown that two imagers for the ESGP (GEPS and

HEPI) exist and are 1likely to be modified to form next-generation
imagers for the Advanced ESGP.

To determine the likely mirror sizes for the advanced imagers, it was
necessary to evaluate the objectives of the GEPS and HEPI and use
these to extrapolate the characteristics for future imagers. The draft
report of the Earth Science Steering Committee 1lists observing
objectives for the HEPI and GEPS instruments. These objectives are
shown on the accompanying chart which lists the observed phenomenon,

desired wavelengths, desired resolution and identifies the appropriate
imager.
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HEPI APERTURE REQUIREMENTS

To determine the actual aperture requirements for an imager, the
observing objectives were combined with the equation shown previously.
In this process, the observing wavelengths were combined with the
associated spatial resolutons for each sensor and objective. 1In
addition, three aperture requirements were generated for each
objective, based on a nominal, maximum and minimum resolution.

To illustrate how this was done, consider the river sediment plume
objective requiring usage of HEPI at wavelengths of 0.4 to 0.9 microns
with spatial resolutions of 50 to 200 meters. Nominal resolution was
assumed to represent the degraded resolution expected for a fixed
mirror diameter as a function of longer wavelength. In other words,
the 50 meter resclution was necessary at 0.4 microns, while 200 meter
resolution was needed at 0.9 microns to achieve the particular
objective. In the case of maximum resolution, the 50 meter resolution
was assumed to be required at both 0.4 and 0.9 microns, while for

minimum resolution, the 200 meter resolution was assumed to be required
at both 0.4 and 0.9 microns.

The aperture requirements shown on the accompanying chart feature the
requirements plotted as a function of the integrated percentage of
specific imager objectives for the three resolution categories. As
described earlier, it is reasonable to expect that a HEPI-type imager
for an Advanced ESGP would be sized to accomplish at least 90 percent
of the objectives at maximum resolution. The 1line on the chart

indicates that this requires a mirror aperture approaching 2.1 meters
in diameter.
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The accompanying figure presents the GEPS mUmHﬂSHm requirements as a
function of the integrated percentage of the imager objectives. The
data indicates that if maximum resolution is required for the entire
wavelength span of interest, a mirror aperture of 2.7 meters is
required. However 90 @mﬂomsﬂ of the desired objectives (typical
performance expected for an Advanced GEPS) can be met at maximum
resolution with an aperture of approximately 1 meter in diameter.

The @mHﬁMOCHmH GEPS objectives which drive the mirror diameter include
imaging of moo to 500 meter resolution at 12.7 microns, which requires
a 1.1 meter mirror aperture for the three resolution categories. In
addition, the desire to monitor sea surface dmswmﬂmﬁcﬂm changes with
resolutions of 200 meters at 12.5 microns would require a 2.7 meter
aperture, however, the nominal and minimum 1000 meter resolution can be
achieved with a mirror as small as 0.54 meters.
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MIRROR APERTURE AS A FUNCTION OF WEIGHT

One of the major drawbacks of larger mirrors is not only the additional
size but the additional weight of the mirror. The accompanying figure
illustrates that mirror weight increases as the square of the mirror
aperture. In other words, a mirror two meters in diameter weighs four
times as much as a one meter mirror.

The plot was drawn with mirror weights normalized to a one meter
aperture but even more importantly, they assume constant mirror
thickness. For terrestrial applications, the severe weight penalties
of larger mirrors have usually been circumvented by using a thinner
mirror or using a honeycomb template to remove excess mirror material
from the back of the mirror. The only drawback in this approach is
that the thinner but larger mirrors tend to be more flexible and
susceptible to figure distortion due to gravitational effects.
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IMAGER REQUIREMENTS SUMMARY

The derived imager requirements for the Advanced ESGP are summarized on
the accompanying chart. High resolution (between 30 to 100 meters)
currently achievable in the visible and short-wavelength infrared, is
expected to be expanded out to 12.5 microns. In an effort to
accomplish at least 90 percent of the expected imager objectives, a
high resolution HEPI-type imager will require an approximately 2.1
meter diameter aperture. For a GEPS-type imager, similar requirements
result in a 1.0 meter aperture.

As mirror weight increases proportionately to the square of the mirror

diameter, a 2.1 meter mirror could weigh up to four times as much as a
one meter mirror. The weight and size of such a mirror and the
expected resulting weight and size of the actual imaging instrunment,
coupled with the stringent pointing requirements that high resolution
produce, will likely result in an instrument-specific pointing system.
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The inherent complexity of ensuring high spatial resolution for imaging

instruments is illustrated on the accompanying chart. The required
pointing stability is given as a function of the desired spatial
resolution. The stability was derived assuming that the pointing is

held to within 10 percent of the instrument field of view (IFOV).

The table inset into the figure dramatically illustrates the tight
pointing requirements. For a resolution of only 1000 meters, the
required stability is 0.5768 arc-seconds, while for a resolution of 30
meters, the required stability is more than an order of magnitude
greater at 0.0173 arc-seconds.

The major problem with the stringent pointing stability required for
high resolution imagers is that the cost and complexity of the Platform
pointing control subsystem is extremely high. The problem is
exacerbated when the imager is heavy and large. A likely alternative
is that instruments that require high stability be similarly required
to provide their own pointing control subsystem, essentially decoupling
them from the platform pointing subsystem.
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CRYOGEN CONSUMABLES

The expected emphasis for Advanced ESGP instruments on the long-
wavelength infrared spectral regime is expected to drive the cooling
implementation that such detectors require. For observations at long
wavelengths, detectors need to be cooled to extreme temperatures to
obtain the required sensitivity. It is expected that these desired
temperatures will be below 60K, which is too cool to be obtained
through strictly passive means.

Two types of cooling methods are commonly used for operating
temperatures that can not be achieved strictly passively. The first is
through the use of mechanical refrigerators or Stirling Coolers. The
major problem with these is the question of limited lifetime and the
pointing instabilities transmitted to the Platform by the mechanical
motions of these devices.

The second choice is the use of cryogens whereby different types are
used dependent on the desired operating temperature. However,
regardless of which type is used, the fact that cryogen boils off under
normal wusage results in the cryogen supply effectively governing
instrument lifetime.

With the added emphasis on long-~wavelength observations and the cooler
operating temperatures required, it is likely that cryogens will be
used at least one instrument for the Advanced ESGP. In an effort to
maximize instrument lifetime, top-off of the cryogen supply at the
Space Station prior to transfer to the geostationary orbit is
recommended.
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MOBILE SERVICING CENTRE - 3D MODEL

A full three dimensional view of the MSC is shown with the SSRMS in the
deployed position. The figure was obtained from the Lockheed CAEDS

object modeling system, which was used as an input to the CIMSTATION
program.
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MOBILE SERVICING CENTRE
OPERATIONAL MODES/TASKS

The MSC is primarily teleoperated by an IVA and/or EVA crewmember from

an MSS control station. Some autonomous functions will be available
for initial MSC operations, and additional autonomy will be
incorporated as a growth capability. A list of the various control

modes available for the MSC components is included below.

a. Force and moment accommodation

b. Collision avoidance

c. Human in the loop trajectory processing
d. Bi-directional control (from either end effector)
€. SSRMS/SPDM coordinated control

f. Coordinate re-referencing

g. Line Tracking

h. Rate Hold

i. Rate input scale selection

j. Rate limit selection

k. Position/orientation hold selection
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MOBILE SERVICING CENTRE
REACH/WORK ENVELOPE

The MSC reach/work envelope consists of the MT and SSRMS
characteristics described below.

The MT can reach at least 5 m (one truss bay) in a single plane. The
reach envelope associated with a plane change is slightly more complex,
involving reaching to the perpendicular truss bay plane.

The reach length of a fully extended SSRMS is 17.6 m (57.7 ft). The
joint limits and independence should allow a reach envelope of almost a
full sphere of this radius, subject to obstructions by the truss, MBS,
etc. The work envelope may be estimated by using the work envelope
radius of 15.9 m (52.2 ft) as shown in the figure to allow all degrees
of freedom in the wrist to be accessed.
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Mobility/Stabilization Constraints

Operational Constraints

MOBILE SERVICING CENTRE - CONSTRAINTS

The MRS depends on the MT for stabilization and transportation to
the worksite. The MRS can be transported to any location that the

MT can access, and operates from MSC utility ports located as shown
in the figure.

The MT is self-mobile. It translates along the truss structure and
stabilizes itself using node latch pins located at the corners of
the truss bay faces. The MT may translate along any suitable open
truss bay face equipped with node latch pins.

The SSRMS may obtain mobility from the MT when attached to the MRS,
or it may relocate itself (using symmetry and bidirectional oozﬁﬁow
capabilities) on PDGFs suitably spaced along the Space Station

exterior. The SSRMS is stabilized at is base attachment to a PDGF.

The MSC will only have one control station active at a time. Shut-
down of any MSC element will be possible at any time from any
active or monitoring MSS control station.

Manipulative Ammem SPDM, FTS) operations will not be performed
while the MSC is in 50#»03.

A maximum of 10 kW will be supplied to the MSC, including payload
and FTS power.

The MT will have the capabiltiy of translating up to TBD truss bays
on battery power.
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FLIGHT TELEROBOTIC SERVICER CHARACTERISTICS

The FTS is a multi-purpose, dexterous robotic system as shown in the
accompanying figure. It has two manipulators and is capable of dual
arm coordinated control. It is designed to assist and reduce EVA by
performing assembly, maintenance, servicing, and inspection tasks. The
baseline FTS will be primarily teleoperated, with limited autonomous
modes. As the system evolves, more autonomous capability will be
developed and implemented. The FTS is intended to.evolve and enhance
on-orbit human/machine capabilities. It plays a critical role in the
assembly of an Advanced Geostationary Platform at SSF.
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FLIGHT TELEROBOTIC SERVICER
OPERATIONAL MODES/TASKS

The FTS operates in four modes, as shown in the figure:
a. Transporter Attached
1. SRMS Transporter Attached

2. SSRMS Transporter Attached - Structural attachment, power,
data, and video are provided via a Power Data Grapple
Fixture (PDGF). It is the primary mode used for assembly
of the geostationary platform bus.

3. OMV Transporter Attached - Utilities provided by the OMV.

b. Fixed Base Dependent - Structural attachment, power, data, and
video are provided via the Worksite Attachment Mechanism (WAM).

c. Fixed Base Independent - Structural attachment is provided through
the WAM, power is provided by internal FTS batteries, and data /
video are provided via the FTS communications system.

d. Fixed Base Umbilical - Structural attachment is provided through
the WAM; power, data, and video are provided via the FTS/SRMS
umbilical, or via an umbilical between the Orbiter Payload Bay and
the FTS.

The FTS can install and remove truss members, install Station Hnﬁoﬂﬂmom
Adapters on the truss, change out ORU's, and/or perform inspections
while mounted on the SSRMS.
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FLIGHT TELEROBOTIC SERVICER
REACH/WORK_ENVELOPE

The FTS reach/work dimensions are shown in the figure:

a. The FTS can reach any worksite location within 72 inches of the
stabilization point (berthing point or mobility/stability aid).

b. The FTS can work through an access opening of 44 inch height by
61 inch width to a depth of 26 inches.

c. The FTS can manipulate workpieces around obstructions with a
minimum clearance of 4.0 inches at any point.

The truss assembly/removal task requirements are capabilities shown
were used in the simulation program.
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SODAS FUNCTIONAL REQUIREMENTS FLOW DIAGRAM

The SODAS functional requirements flow diagram is shown in the figure
and concepts of a number of integrated databases are identified below:

o

operations concept - a set of on-orbit operations flows in TDL
files. Depending on user reqirements, separate operations concepts
may exist for VPOD, SMOD, and FOD.

missions - a sequential flow of required activities. A mission is a
deterministic path through the operations concept (e.g. on-orbit
assembly of an Advanced Geostationary Platform at SSF).

events -~ required activities. Events can be mapped to tasks
identified in the operations concept. Depending on user needs,
separate events databases may exist for VPOD, SMOD, and FOD. The
events databases hold data on event duration, and on required crew,
skills, equipment, and hardware.

equipment - SSF and transportation node elements and tools used in
on-orbit operations. The equipment database is shared among VPOD,
SMOD, and FOD. The database holds the hierarchical relationships

among equipment, and eqgipment specific data such as resource (e.gq.,
power, communication, thermal, fluids) needs, mass and dimensions.

hardware - components or modules of a vehicle or science mission not
provided by SSF, i.e., mission-unique equipment or vehicle assembly.
Depending on user requirements, separate hardware databases may
exist for VPOD, SMOD, and FOD. The database holds the hierarchical
relationship among hardware and subhardware, and hardware specific
data such as resource requirements, mass and dimensions.

SODAS is implements in ORACLE and ANSI-C for maximum portability among
different computer architectures and operating systems. However, the
current platform is an IBM-compatible 386 workstation running PC-DOS.
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As shown in the figure, the Space Operations Database and Analysis
System (SODAS) is used to store and maintain the operations analysis
information. SODAS is an automated on-orbit operations modeling tool
that provides for rapid development, modification, and analysis of
mission scenarios, and interfaces with the VPOD, FOD, and SMOD

databases. SODAS uses a structured methodology for defining on-orbit
operations. It allows analysts to define on-orbit events, to specify
SSF-provided equipment and mission-specific hardware (e.g., vehicle
assemblies) needed to perform the events, and to define a mission
scenario. For mission scenarios, SODAS produces cost models,
timelines, and reports on SSF resource usage requirements such as
power, thermal control, and communications. SODAS also provides

reports on required crew members and necessary crew skill. This data
can be used to define payload and user accommodations.
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COMPUTER INTEGRATED ENGINEERING AND MANUFACTURING SYSTEM (CIEM)

ILMSC established the CIEM Project in 1985 to implement CAD/CAE/CAM
technology for the company. The following services are provided:

Development and implementation of a CIEM System

Computer program evaluations, procurement, installation, training
User support

Computing environment architecture and procurement assistance
Central point of contact for software/computing equipment vendors
Source for CAD/CAE/CAM technology information

000000

Areas of expertise include: solid modeling; assembly/mechanism design;
structural/thermal analysis; configuration/data management; expert
systems; and manufacturing planning. These technology areas have a
potential contribution to all SSF Advanced Concepts Tasks.

As part of CIEM System development, evaluations were performed to
identify the most effective commercially available software for
structrual design and analysis and data management, resulting in
selection of IDEAS for engineering and ORACLE for data management.
IDEAS, being the integration basis and a significant part of the
analysis capability of IDEAS**2, provides a high degree of analytical
commonality with the customer and an effective means of data exchange
through IDEAS universal files. IMSC is experienced in production use
of non-IDEAS technical software integrated into IDEAS**2, viz.,
NASTRAN, ADAMS, TRASYS and SINDA. Other modules of IDEAS**2 could
easily be integrated into the CIEM System through the IDEAL language,
or the entire IDEAS**2 program could be implemented. CIEM's adoption
of the ORACLE RDBMS also enables convenient access to CTA's "VPOD."

IMSCs CAD/CAE/CAM implementation though the CIEM Project has resulted
in a high degree of commonality with NASA in technical expertise, data
management, and analytical tools. This commonality provides an
excellent matrix for engineering cooperation and data interchange.
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AUTOMATED SCENARIO GENERATOR

The automated scenario generator computer program concept was initially
developed by IMSC for NASA/GSFC in support of servicing scenario
database efforts on Work Package 3. Database systems developed for SSF
include Vehicle Operation Database (VPOD) and Space Operations Database

and Analysis System (SODAS). The automated scenario generator program
characteristics and capabilities:

O Support design of servicing facilities:
© Incorporate comprehensive vehicle-specific database;

© Provide detailed function/task list scenarios with timelines and
resource allocation and consumption date;

© Produce scenarios with task flow diagram of function relationships;
O Generate scenarios by interactive query system;
© Handle routine, as well as special/contingency servicing missions;

© Permit easy updating of the database in real time.
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